Efficient Synthesis of 5-Demethyl-6-methylisoellipticine and Utilization of the Methodology to Prepare Angular and Linear Pyridocarbazoles

Arun C. Karmakar, Gandhi K. Kar and Jayanta K. Ray*
Department of Chemistry, Indian Institute of Technology, Kharagpur—721 302, India

Abstract

5-Demethyl-6-methylisoellipticine and its analogue 7-methylpyrido[4,3-c]carbazole have been synthesized by thermal cyclization of N-methylcarbazoles having an active acid azide side-chain, followed by reduction.

Pyridocarbazoles of both natural and unnatural origin have attracted synthetic organic chemists because of their wide variety of biological activities. ${ }^{1}$ Ellipticine 1 has been synthesized by many groups (see ref. 1 and refs. therein). However, only a few syntheses of isoellipticine 2^{2-7} are known. Recently many new pyridocarbazoles have been synthesized and found to be potential antitumour agents. ${ }^{3}$ In order to understand (at the molecular level) the mechanism of action of the antitumour activity and how DNA becomes alkylated by pyridocarbazoles, several analogues of ellipticine and isoellipticine are required. More recently ${ }^{8}$ it has been reported that N-methyl derivatives of pyridocarbazoles are potent anticancer agents. To prepare a surrogate of ellipticine with the same molecular formula but with different positions of methyl groups and nitrogen atoms we have undertaken and completed the total synthesis of the hitherto unknown 5-demethyl-6-methylisoellipticine 3 (the title compound) and its angular analogue 7 -methylpyrido $[4,3-c]$ carbazole 20 , which are the main subjects of this paper.

Our approach to pyrridocarbazoles involves selective threecarbon annelation, in which an active acid azide group at the chain end is fused onto the carbazole moiety (shown retrosynthetically in Scheme 1). Carbazole derivative 7 was prepared from Hagemann's ester 5 and phenylhydrazine 4 by a modified method developed by Bergman and Pelcman, ${ }^{9}$ followed by dehydrogenation with $10 \% \mathrm{Pd}-\mathrm{C}$. Compound 7 on treatment with $\mathrm{NaH} / \mathrm{MeI}$ produced the N-methylcarbazole derivative 8 in 76% yield. The ester group in compound 8 was converted into the aldehyde 10 by LiAlH_{4} reduction to the alcohol 9 followed by oxidation with active MnO_{2} in almost quantitative yield. Condensation of the aldehyde 10 with malonic acid produced the α, β-unsaturated E-acid 11, which in turn was converted into the acid azide derivative 12 by treatment with $\mathrm{ClCO}_{2} \mathrm{Et} /-\mathrm{Et}_{3} \mathrm{~N}-\mathrm{NaN}_{3}$ in 80% yield. Following the method of Bisagni et al., ${ }^{10}$ the azide 12 on being heated with $\mathrm{Bu}_{3} \mathrm{~N}$ in boiling $\mathrm{Ph}_{2} \mathrm{O}$ underwent smooth and selective cyclization to the δ-lactam 13 in very good yield. Compound 13 , when treated with POCl_{3} at $120^{\circ} \mathrm{C}$, afforded 4-chloro-5-demethyl-6-methylisoellipticine 14 as a lemon yellow solid which, on reduction
with $\mathrm{Zn}-\mathrm{AcOH}$, produced the title compound 3 in $\sim 80 \%$ yield. The results are given in Table 1.

We then applied the above methodology to the synthesis of the angular pyridocarbazole derivative 7 -methylpyrido[4,3-c]carbazole 20 via the thermal cyclization of the azide 17 according to Scheme 2. Though it has been reported that 7 H -pyrido[4,3-c]carbazoles in their dimeric form show enhanced activity against L1210 leukaemia compared with the ellipticine dimer ${ }^{11,12}$ which was found to be completely inactive, but still only very few ${ }^{13-15}$ syntheses of pyrido[4,3-c]carbazole and their derivatives have been published so far and in most cases they have led to the formation of a mixture of isomeric products.

The azide 17 required for the synthesis of the lactam 18 was prepared from the acid 16 which was, in turn, obtained by Knoevenagel condensation of N-methylcarbazole-3-carbaldehyde $15{ }^{16}$ with malonic acid in excellent yield. Azide cyclization under similar conditions as described for the preparation of compound 13 produced 2,7-dihydro-7-methylpyrido[4,3-c]car-bazol-1-one in high yield. In Scheme 1 we found that cyclization of the azide $\mathbf{1 2}$ produced the linear lactam 13 as the sole product; however, the azide having no methyl group at $\mathrm{C}-4$ of the carbazole moiety (i.e., azide 17) gave, on thermal cyclization, the angular lactam 18 exclusively and no formation of linear product was observed, as evident by the high downfield shift of the proton $(11-\mathrm{H})$ in ${ }^{1} \mathrm{H}$ NMR spectrum of the lactam 18 and that of the chloro derivative 19 which was obtained from the lactam 18 by treatment with POCl_{3} at $120^{\circ} \mathrm{C}$. Subsequent reduction of the chloro derivative with $\mathrm{Zn}-\mathrm{AcOH}$ produced the desired product, 7 -methyl- 7 H -pyrido $[4,3-c$]carbazole 20 as a solid in $\sim 90 \%$ yield. The overall results and spectral data are summarized in Table 2.
In an attempt to study the regioselectivity in the cyclization of a suitable isocyanate derivative (Scheme 3) with polyphosphoric acid (PPA) to produce the δ-lactam as the precursor of pyridocarbazole derivatives, it was found that the isocyanate 23 prepared from the corresponding dihydro azide 22 on treatment with PPA produced, in 71% yield, a mixture of the angular lactam 2,3,4,7-tetrahydro-7-methylpyrido[4,3-c]carbazol-1-one

1 Ellipticine

2 Isoellipticine

$$
\left(R^{1}=H, R^{2}=R^{3}=M e\right)
$$

3 5-demethy-6-methyl isoellipticine
$\left(R^{1}=R^{3}=M e, R^{2}=H\right)$

Scheme 1 Reagents and conditions: i, AcOH , reflux; ii, $\mathrm{Pd}-\mathrm{C}(10 \%), p$-cymene, reflux; iii, $\mathrm{NaH}, \mathrm{MeI}, \mathrm{THF}, 0^{\circ} \mathrm{C}$ to room temperature; iv, LAH, THF,
 POCl_{3}, reflux; xi, $\mathrm{Zn}, \mathrm{AcOH}$, reflux

 POCl_{3}, reflux; vi, $\mathrm{Zn}, \mathrm{AcOH}$, reflux

24 and the linear isomer 2,3,4,10-tetrahydro-10-methylpyri-do[3,4-b]carbazol-1-one 25 in $3: 1$ ratio [as evident from ${ }^{1} \mathrm{H}$ NMR spectrometry (Fig. 1)] together with compound 26 in $\sim 15 \%$ yield. However, we could not separate the lactams 24 and 25 at this stage by the usual chromatographic methods. The mixture of the above lactams, when treated with POCl_{3} followed by the usual work-up, afforded the angular chloro derivative 1 -chloro-3,6-dihydro-7-methyl-3 H -pyrido[4,3-c]carbazole 27 and the linear lactam 2,3,4,10-tetrahydro-10-methylpyrido $[3,4-b]$ carbazol 1 -one 25 , which could easily be separated by chromatographic methods.

Conclusions.-Thermal cyclization of the azide via an intermediate nitrene usually takes place at the C-4 position of the carbazole moiety, leading to the angular isomer, i.e. compound 18, exclusively whereas a methyl group at $\mathrm{C}-4$ forces the cyclization to occur at the C-2 position of the carbazole moiety to produce the linear product 13 as the only product. However, in the case of cyclization of the isocyanate with PPA, cyclization occurs at $\mathrm{C}-2$ as well as $\mathrm{C}-4$ of the carbazole moiety, the major product being that formed by reaction at the $\mathrm{C}-4$ position, i.e. the angular isomer.

The pyridocarbazoles thus prepared will be screened for

Table 1

Compound	Nature	$\begin{aligned} & \text { M.p. }\left(T /{ }^{\circ} \mathrm{C}\right) \\ & \text { (recryst. solvent) } \end{aligned}$	Yield (\%)	$v_{\text {max }} / \mathrm{cm}^{-1}$	$\delta_{\text {H }}$	m / z
7	Solid	$\begin{aligned} & 181-182 \\ & \text { (EtOH) } \end{aligned}$	90.6		$\begin{aligned} & 1.45(3 \mathrm{H}, \mathrm{t}), 3.2(3 \mathrm{H}, \mathrm{~s}), 4.42 \\ & (3 \mathrm{H}, \mathrm{q}), 7.2(1 \mathrm{H}, \mathrm{~d}), 7.15-7.5 \\ & (3 \mathrm{H}, \mathrm{~m}), 8.0(1 \mathrm{H}, \mathrm{~d}), 8.3(1 \mathrm{H}, \\ & \text { d), } 8.4(1 \mathrm{H}, \mathrm{~s}) \end{aligned}$	
8	Solid	108-109 (light petroleum)	75.7	1700	$\begin{aligned} & 1.4(3 \mathrm{H}, \mathrm{t}), 3.1(3 \mathrm{H}, \mathrm{~s}), 3.7 \\ & (3 \mathrm{H}, \mathrm{~s}), 4.4(2 \mathrm{H}, \mathrm{q}), 7.1(1 \mathrm{H}, \mathrm{~d}) \text {, } \\ & 7.15-7.5(3 \mathrm{H}, \mathrm{~m}), 7.95(1 \mathrm{H}, \mathrm{~d}) \text {, } \\ & 8.2(1 \mathrm{H}, \mathrm{~d}) \end{aligned}$	
9	Solid	202-203	100	3400	$2.8(3 \mathrm{H}, \mathrm{s}), 3.7(3 \mathrm{H}, \mathrm{s}), 4.4$ $(1 \mathrm{H}, \mathrm{s}), 4.7(2 \mathrm{H}, \mathrm{s}), 7.0-7.6$ ($5 \mathrm{H}, \mathrm{m}$), 8.0-8.2 ($1 \mathrm{H}, \mathrm{m}$)	
10	Solid	122-123	99	1700	$3.0(3 \mathrm{H}, \mathrm{~s}), 3.6(3 \mathrm{H}, \mathrm{~s}), 7.0-7.5$ ($4 \mathrm{H}, \mathrm{m}$), $7.9(1 \mathrm{H}, \mathrm{d}), 8.1(1 \mathrm{H}$, d), $10.3(1 \mathrm{H}, \mathrm{s})$	
11	Solid	250-251	71.3	1610, 1675	$\begin{aligned} & \text { (methyl ester) } 3.0(3 \mathrm{H}, \mathrm{~s}) \text {, } \\ & 3.2(3 \mathrm{H}, \mathrm{~s}), 3.8(3 \mathrm{H}, \mathrm{~s}), 6.4 \\ & (1 \mathrm{H}, \mathrm{~d}), 7.2-7.8(6 \mathrm{H}, \mathrm{~m}), \\ & 8.2-8.5(1 \mathrm{H}, \mathrm{~m}) \end{aligned}$	
12	Yellow solid	$\begin{aligned} & 146-147 \\ & \text { (decomp.) } \end{aligned}$	82.1	$\begin{aligned} & 1610,1660, \\ & 2050 \end{aligned}$		
13	Light yellow solid	>280	71.4	1620, 1645		
14	Lemon yellow solid	$\begin{aligned} & 188-189 \\ & \left(\mathrm{CHCl}_{3}\right) \end{aligned}$	70.2		$\begin{aligned} & 3.0(3 \mathrm{H}, \mathrm{~s}), 3.7(3 \mathrm{H}, \mathrm{~s}), 7.2-7.9 \\ & (5 \mathrm{H}, \mathrm{~m}), 8.1-8.4(4 \mathrm{H}, \mathrm{~m}) \end{aligned}$	$\begin{aligned} & 282(\mathrm{M}+2), 281(\mathrm{M}+1), \\ & 280\left(\mathrm{M}^{+}\right), 279(\mathrm{M}-1), 267, \\ & 266,265(\mathrm{M}-15), 245,244, \\ & 243,242,230,229,228,217, \\ & 216,215,214,203,202,201 \text {, } \\ & 149,141,122 \end{aligned}$
3	Yellow solid	168-170	79.7		$3.1(3 \mathrm{H}, \mathrm{s}), 3.8(3 \mathrm{H}, \mathrm{s}), 7.2-7.7$ $(5 \mathrm{H}, \mathrm{m}), 7.9(1 \mathrm{H}, \mathrm{d}), 8.3(1 \mathrm{H}$, d), $9.3(1 \mathrm{H}, \mathrm{s})$	$\begin{aligned} & 247(\mathrm{M}+1), 246\left(\mathrm{M}^{+}\right), 245 \\ & (\mathrm{M}-1), 231(\mathrm{M}-15), 123 \end{aligned}$

Table 2

Compound	Nature	$\begin{aligned} & \text { M.p. }\left(T /{ }^{\circ} \mathrm{C}\right) \\ & \text { (recryst. solvent) } \end{aligned}$	Yield (\%)	$v_{\text {max }} / \mathrm{cm}^{-1}$	$\delta_{\text {H }}$	m / z
16	Solid	245-246	92.8	1615, 1670	$\begin{aligned} & \text { (methyl ester) } 3.6(3 \mathrm{H}, \mathrm{~s}), \\ & 3.7(3 \mathrm{H}, \mathrm{~s}), 6.3(1 \mathrm{H}, \mathrm{~d}), 7.0-8.1 \\ & (8 \mathrm{H}, \mathrm{~m}) \end{aligned}$	
17	Yellow solid	$124-125$ (decomp.)	73.4	$\begin{aligned} & 1588,1674, \\ & 2133 \end{aligned}$	$\begin{aligned} & 3.8(3 \mathrm{H}, \mathrm{~s}), 6.5(1 \mathrm{H}, \mathrm{~d}), \\ & 7.2-8.3(8 \mathrm{H}, \mathrm{~m}) \end{aligned}$	
18	Light yellow solid	244-245	76.6	1586, 1642	$\begin{aligned} & 4.0(3 \mathrm{H}, \mathrm{~s}), 6.72(1 \mathrm{H}, \mathrm{~d}), 7.04 \\ & 7.92(5 \mathrm{H}, \mathrm{~m}), 8.12(1 \mathrm{H}, \mathrm{~d}) \\ & 9.84(1 \mathrm{H}, \mathrm{~d}), 11.32(1 \mathrm{H}, \mathrm{br} \mathrm{~s}) \end{aligned}$	
19	Yellow solid	129-130	65.4		$\begin{aligned} & 3.75(3 \mathrm{H}, \mathrm{~s}), 7.25-7.85(6 \mathrm{H}, \\ & \mathrm{m}), 8.35(1 \mathrm{H}, \mathrm{~d}), 9.2(1 \mathrm{H}, \mathrm{~d}) \end{aligned}$	$\begin{aligned} & 268(\mathrm{M}+2), 267(\mathrm{M}+1), \\ & 266 \\ & \left(\mathrm{M}^{+}\right), 251,231,230,229,216, \\ & 215 \end{aligned}$
20	Solid	164-165	90		$\begin{aligned} & 3.92(3 \mathrm{H}, \mathrm{~s}), 7.2-8.08(6 \mathrm{H}, \mathrm{~m}), \\ & 8.6(2 \mathrm{H}, \mathrm{~d}), 10.24(1 \mathrm{H}, \mathrm{~s}) \end{aligned}$	

biological activity against leukaemia L1210 cells transplanted into mice.

Experimental

Unless otherwise stated ${ }^{1} \mathrm{H}$ NMR spectra were recorded at 90 MHz (Varian) and 100 MHz (Jeol) for solutions in $\left[{ }^{2} \mathrm{H}\right]$ chloroform. J Values are given in Hz. IR spectra were recorded on a Perkin-Elmer 800 machine and mass spectral data were obtained from IICB, Calcutta.

Ethyl 4-Methylcarbazole-3-carboxylate 7.-EEthyl 1,2-di-hydro-4-methylcarbazole-3-carboxylate ${ }^{9} 6(3.0 \mathrm{~g}, 11.76 \mathrm{mmol})$ was refluxed with $\mathrm{Pd}-\mathrm{C}(10 \%)$ (500 mg) p-cymene ($25 \mathrm{~cm}^{3}$) for 6 h . The catalyst was separated by filtration and the solvent was removed under reduced pressure. The crude product thus obtained was redissolved in benzene and filtered through a
short column of neutral $\mathrm{Al}_{2} \mathrm{O}_{3}$. Removal of benzene afforded compound 7, which on recrystallization from ethanol gave a shining solid ($2.7 \mathrm{~g}, 90.6 \%$), m.p. $181-182{ }^{\circ} \mathrm{C} ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3} ; 90 \mathrm{MHz}\right.$) $1.45(3 \mathrm{H}, \mathrm{t}), 3.2(3 \mathrm{H}, \mathrm{s}), 4.42(2 \mathrm{H}, \mathrm{q}), 7.2(1 \mathrm{H}, \mathrm{d}), 7.15-7.5(3 \mathrm{H}, \mathrm{m})$, $8.0(1 \mathrm{H}, \mathrm{d}), 8.3(1 \mathrm{H}, \mathrm{d}), 8.3(1 \mathrm{H}, \mathrm{d})$ and $8.4(1 \mathrm{H}$, s) (Found: C, 75.7 ; H, 5.75; N, 5.4. $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{NO}_{2}$ requires C, 75.89 ; H, 5.93 ; N, 5.53%).

Ethyl 4,9-Dimethylcarbazole-3-carboxylate 8.-To a suspension of $50 \% \mathrm{NaH}(600 \mathrm{mg}, 12.5 \mathrm{mmol})$ in anhydrous tetrahydrofuran (THF) $\left(20 \mathrm{~cm}^{3}\right)$ at $0-5^{\circ} \mathrm{C}$ was added dropwise a solution of compound $7(3.0 \mathrm{~g}, 11.9 \mathrm{mmol})$ in THF $\left(20 \mathrm{~cm}^{3}\right)$. The mixture was stirred under nitrogen at $0-5^{\circ} \mathrm{C}$ for 45 min and then a solution of methyl iodide ($2.13 \mathrm{~g}, 15.0 \mathrm{mmol}$) in THF ($10 \mathrm{~cm}^{3}$) was added dropwise. The reaction mixture was stirred for 1 h at $0-5^{\circ} \mathrm{C}$ and then at room temperature overnight. THF was partly removed by distillation, and the

(9:3:2) $24+25$
Scheme 3 Reagents and conditions: i, $\mathrm{H}_{2}, \mathrm{Pd}-\mathrm{C}(10 \%)$, EtOH , room temp.; ii, $\mathrm{ClCO}_{2} \mathrm{Et}, \mathrm{Et}_{3} \mathrm{~N}, 0-5^{\circ} \mathrm{C}$; iii, $\mathrm{NaN}_{3}, 0-5{ }^{\circ} \mathrm{C}$; iv, benzene, reflux; v, PPA, $80-100^{\circ} \mathrm{C}$; vi, POCL_{3}, reflux

Fig. $1{ }^{1} \mathrm{H}$ NMR data for compounds 24 and 25
product was decomposed with ice-water and extracted with chloroform. Usual work-up afforded the title compound as a solid ($2.4 \mathrm{~g}, 75.7 \%$), m.p. $108-109^{\circ} \mathrm{C}$ [from light petroleum ($60-$
$\left.\left.80^{\circ} \mathrm{C}\right)\right] \quad v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} \quad 1700 ; \quad \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3} ; \quad 90 \quad \mathrm{MHz}\right) \quad 1.4$ ($3 \mathrm{H}, \mathrm{t}), 3.1(3 \mathrm{H}, \mathrm{s}), 3.7(1 \mathrm{H}, \mathrm{s}), 4.4(2 \mathrm{H}, \mathrm{q}), 7.1(1 \mathrm{H}, \mathrm{d}), 7.15-7.5$ ($3 \mathrm{H}, \mathrm{m}$) , $7.95(1 \mathrm{H}, \mathrm{d}$) and $8.2(1 \mathrm{H}, \mathrm{d})$ (Found: C, 76.3; H, 6.2; $\mathrm{N}, 5.05 . \mathrm{C}_{17} \mathrm{H}_{17} \mathrm{NO}_{2}$ requires $\mathrm{C}, 76.40 ; \mathrm{H}, 6.37 ; \mathrm{N}, 5.05 \%$).
(4,9-Dimethylcarbazol-3-yl)methanol 9.-A solution of compound $8(2.0 \mathrm{~g}, 7.5 \mathrm{mmol})$ in anhydrous THF $\left(10 \mathrm{~cm}^{3}\right)$ was added dropwise to a stirred solution of $\mathrm{LiAlH}_{4}(595 \mathrm{mg}, 15.6$ mmol) in THF ($15 \mathrm{~cm}^{3}$) at room temperature. The mixture was refluxed and stirred under nitrogen for 4 h , cooled to $0-5^{\circ} \mathrm{C}$, decomposed with ice-water and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. Usual work-up afforded the alcohol $9(1.69 \mathrm{~g}, 100 \%)$ as a solid, m.p. $202-203{ }^{\circ} \mathrm{C} ; v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 3400 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3} ; 90 \mathrm{MHz}\right) 2.8$ ($3 \mathrm{H}, \mathrm{s}$), $3.7(3 \mathrm{H}, \mathrm{s}), 4.4(1 \mathrm{H}, \mathrm{s}), 4.7(2 \mathrm{H}, \mathrm{s}), 7.0-7.6(5 \mathrm{H}, \mathrm{m})$ and $8.0-8.2(1 \mathrm{H}, \mathrm{m})$. The compound was not purified further and was used directly for the next step.

4,9-Dimethylcarbazole-3-carbaldehyde 10.-To a solution of the alcohol $9(1.4 \mathrm{~g})$ in chloroform $\left(100 \mathrm{~cm}^{3}\right)$ was added an excess of active $\mathrm{MnO}_{2}(10 \mathrm{~g})$, and the mixture was stirred at $30-35^{\circ} \mathrm{C}$ for 4.5 h and then filtered. The filtrate, on removal of solvent, afforded the aldehyde $\mathbf{1 0}$ which, on recrystallization from ethanol, gave shining needles $(1.37 \mathrm{~g}, 99 \%)$, m.p. 122 $123{ }^{\circ} \mathrm{C} ; \quad v_{\max }(\mathrm{Nujol}) / \mathrm{cm}^{-1} 1700 ; \quad \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3} ; 90 \mathrm{MHz}\right) 3.0$ ($3 \mathrm{H}, \mathrm{s}$), $3.6(3 \mathrm{H}, \mathrm{s}), 7.0-7.5(4 \mathrm{H}, \mathrm{m}), 7.9(1 \mathrm{H}, \mathrm{d}), 8.1(1 \mathrm{H}, \mathrm{d})$ and $10.3(1 \mathrm{H}, \mathrm{s})$ (Found: C, 80.6; H, 5.65; N, 6.1. $\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{NO}$ requires $\mathrm{C}, 80.71 ; \mathrm{H}, 5.83 ; \mathrm{N}, 6.28 \%$).
(E)- β-(4,9-Dimethylcarbazol-3-yl)acrylic Acid 11.-A solution of malonic acid $(1.0 \mathrm{~g})$ and the aldehyde $10(600 \mathrm{mg}, 2.7$ mmol) in pyridine $\left(20 \mathrm{~cm}^{3}\right)$ containing $3-4$ drops of piperidine was heated at $80^{\circ} \mathrm{C}$ for 2 h and within this time an additional amount (1.0 g) of malonic acid was added in two batches. Finally the reaction mixture was refluxed for 1 h , cooled to room temperature and poured onto ice-water containing excess of hydrochloric acid. The solid was separated by filtration, washed well with water and dried (in vacuo) to give the acid $11\left(770 \mathrm{mg}, 71.3 \%\right.$), m.p. $250-251^{\circ} \mathrm{C}$; $v_{\max }$ (Nujol)/ $\mathrm{cm}^{-1} 1610$ and $1675 ;{ }^{1} \mathrm{H}$ NMR spectrum of the methyl ester: $\delta_{\mathbf{H}}\left(\mathrm{CDCl}_{3} ; 90 \mathrm{MHz}\right) 3.0(3 \mathrm{H}, \mathrm{s}), 3.2(3 \mathrm{H}, \mathrm{s}), 3.8(3$ $\mathrm{H}, \mathrm{s}), 6.4(1 \mathrm{H}, \mathrm{d}, J 16), 7.2-7.8(6 \mathrm{H}, \mathrm{m})$ and $8.2-8.5(1 \mathrm{H}, \mathrm{m})$ (Found: C, 77.7; H, 5.45; N, 5.1. $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{NO}_{2}$ requires $\mathrm{C}, 76.98$; H, 5.66; N, 5.28\%).
(E)- β-(4,9-Dimethylcarbazol-3-yl)acryloyl Azide 12.-To a suspension of the acid $11(420 \mathrm{mg}, 1.6 \mathrm{mmol})$ in acetone $\left(10 \mathrm{~cm}^{3}\right)$ at $0{ }^{\circ} \mathrm{C}$, was added $\mathrm{Et}_{3} \mathrm{~N}\left(0.5 \mathrm{~cm}^{3}\right)$ followed by dropwise addition of a solution of ethyl chloroformate ($200 \mathrm{mg}, 1.8 \mathrm{mmol}$) in acetone $\left(10 \mathrm{~cm}^{3}\right)$. The mixture was stirred at $0-5^{\circ} \mathrm{C}$ for 45 min and then a solution of $\mathrm{NaN}_{3}(200 \mathrm{mg}, 3 \mathrm{mmol})$ in water ($4-5 \mathrm{~cm}^{3}$) was added. The mixture was stirred at $0-5^{\circ} \mathrm{C}$ for 1 h more and was then poured into ice-water. The bright yellow solid which separated out was filtered off and dried (in vacuo) ($390 \mathrm{mg}, 82.1 \%$), m.p. $146-147^{\circ} \mathrm{C}$ (decomp.); $v_{\max }(\mathrm{Nujol}) / \mathrm{cm}^{-1}$ 1610,1660 and 2050.

2,10-Dihydro-5,10-dimethylpyrido[3,4-b]carbazol-1-one 13.To a refluxing solution of diphenyl ether ($10 \mathrm{~cm}^{3}$) and $\mathrm{Bu}_{3} \mathrm{~N}$ ($1.5 \mathrm{~cm}^{3}$) under N_{2} was added dropwise a solution of the azide $12(155 \mathrm{mg}, 0.53 \mathrm{mmol})$ in diphenyl ether ($10 \mathrm{~cm}^{3}$) during ca. 15 min. The solution was refluxed for 1 h . Diphenyl ether was removed as much as possible under reduced pressure and the residue was then diluted with light petroleum $\left(40-60^{\circ} \mathrm{C}\right)$. The dirty yellow solid was filtered off and washed with a little cold benzene to produce lactam 13 as a light yellow solid $(100 \mathrm{mg}$, 71.4%), m.p. $>280^{\circ} \mathrm{C}$; $v_{\max }(\mathrm{Nujol}) / \mathrm{cm}^{-1} 1620$ and 1645 (Found: C, $77.65 ; \mathrm{H}, 5.15 ; \mathrm{N}, 10.5 . \mathrm{C}_{17} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}$ requires C , 77.86 ; H, 5.34; N, 10.69%).

4-Chloro-5-demethyl-6,11-dimethylisoellipticine 14.-The lactam $13(80 \mathrm{mg}, 0.30 \mathrm{mmol})$ and $\mathrm{POCl}_{3}\left(2-3 \mathrm{~cm}^{3}\right)$ were refluxed and stirred at $120^{\circ} \mathrm{C}$ for 3 h , cooled and poured into ice-water. The mixture was left overnight at $0-5^{\circ} \mathrm{C}$, basified with aq. $\mathrm{Na}_{2} \mathrm{CO}_{3}$ and extracted with chloroform. After the usual workup a brown solid was obtained which, on purification by column chromatography [neutral $\mathrm{Al}_{2} \mathrm{O}_{3}$ /benzene-light petroleum (3:7)] afforded compound 14 as a lemon yellow solid (60 mg , 70.2%), m.p. $188-189^{\circ} \mathrm{C} \delta_{\mathbf{H}}\left(\mathrm{CDCl}_{3} ; 90 \mathrm{MHz}\right) 3.0(3 \mathrm{H}, \mathrm{s}), 3.7$ ($3 \mathrm{H}, \mathrm{s}$), 7.2-7.9 $(5 \mathrm{H}, \mathrm{m})$ and $8.1-8.4(2 \mathrm{H}, \mathrm{m}) ; m / z 282(\mathrm{M}+2)$, $281(M+1), 280\left(\mathbf{M}^{+}\right), 279(M-1), 267,266,265(M-15)$, $245,244,243,242,230,229,228,217,216,215,214,203,202,201$, 149,141 and 122 (Found: C, $72.7 ; \mathrm{H}, 4.6 ; \mathrm{N}, 9.9 . \mathrm{C}_{17} \mathrm{H}_{13} \mathrm{ClN}_{2}$ requires $\mathrm{C}, 72.72 ; \mathrm{H}, 4.63 ; \mathrm{N}, 9.98 \%$).

5-Demethyl-6,11-dimethylisoellipticine 3.-Compound 14 (50 $\mathrm{mg}, 0.18 \mathrm{mmol}$) was refluxed under nitrogen with Zn dust (150 $\mathrm{mg})$ in acetic acid $\left(3 \mathrm{~cm}^{3}\right)$ for 5.5 h . The mixture was then cooled, diluted with ice-water, made alkaline with aq. $\mathrm{Na}_{2} \mathrm{CO}_{3}$ and extracted with chloroform, and the extract was washed with brine and dried ($\mathrm{Na}_{2} \mathrm{SO}_{4}$). Removal of solvent afforded a very viscous oil, which was purified by column chromatography [neutral $\mathrm{Al}_{2} \mathrm{O}_{3}$ /benzene-light petroleum (3:7)] to produce the title compound as a very viscous yellow oil ($35 \mathrm{mg}, 79.7 \%$) which solidified to a yellow-brown solid on storage for some considerable time, m.p. $168-170{ }^{\circ} \mathrm{C} ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3} ; 100 \mathrm{MHz}\right) 3.1$ ($3 \mathrm{H}, \mathrm{s}$), $3.8(3 \mathrm{H}, \mathrm{s}), 7.2-7.7(5 \mathrm{H}, \mathrm{m}), 7.9(1 \mathrm{H}, \mathrm{d}), 8.3(1 \mathrm{H}, \mathrm{d})$ and $9.3(1 \mathrm{H}, \mathrm{s})$ (Found: C, 82.9; H, 5.6; N, 11.3. $\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{~N}_{2}$ requires $\mathrm{C}, 82.92 ; \mathrm{H}, 5.69 ; \mathrm{N}, 11.38 \%$).
(E)- β-(9-Methylcarbazol-3-yl)acrylic Acid 16.--9-Methyl-carbazole-3-carbaldehyde ${ }^{15} 15(3.5 \mathrm{~g}, 16 \mathrm{mmol})$, malonic acid (3.8 g , excess), piperidine $\left(0.2 \mathrm{~cm}^{3}\right.$) and dry pyridine ($15 \mathrm{~cm}^{3}$) on reaction under the similar conditions to those used for the preparation of compound 11 produced the title acid 16 as a solid ($3.9 \mathrm{~g}, 92.8 \%$), m.p. $245-246{ }^{\circ} \mathrm{C}$; $v_{\max }($ Nujol $) / \mathrm{cm}^{-1} 1615$ and $1670 ;{ }^{1} \mathrm{H}$ NMR spectrum of the methyl ester: $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right.$; $90 \mathrm{MHz}) 3.6(3 \mathrm{H}, \mathrm{s}), 3.7(3 \mathrm{H}, \mathrm{s}), 6.3(1 \mathrm{H}, \mathrm{d}, J \sim 16)$ and $7.0-8.1$ ($8 \mathrm{H}, \mathrm{m}$) (Found: C, 76.3; H, 4.95; $\mathrm{N}, 5.4 . \mathrm{C}_{16} \mathrm{H}_{13} \mathrm{NO}_{2}$ requires C, $76.49 ; \mathrm{H}, 5.18 ; \mathrm{N}, 5.58 \%$).
(E)- β-(9-Methylcarbazol-3-yl)acryloyl Azide 17.-The acid $16(1.7 \mathrm{~g}, 6.8 \mathrm{mmol}), \mathrm{Et}_{3} \mathrm{~N}(0.86 \mathrm{~g}, 8.6 \mathrm{mmol})$, ethyl chloroformate ($0.93 \mathrm{~g}, 8.6 \mathrm{mmol}$) and NaN_{3} (2.7 g , excess) on reaction under the conditions as described for the preparation of compound 12 afforded the azide 17 as a yellow solid (1.36 g , 73.4%), m.p. $124-125^{\circ} \mathrm{C}$ (decomp.); $v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 1588$, 1674 and $2133 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3} ; 90 \mathrm{MHz}\right) 3.8(3 \mathrm{H}, \mathrm{s}), 6.5(1 \mathrm{H}, \mathrm{d})$ and $7.2-8.3(8 \mathrm{H}, \mathrm{m})$.

2,7-Dihydro-7-methylpyrido[4,3-c] carbazol-1-one 18.-The azide $17(0.64 \mathrm{~g}, 2.3 \mathrm{mmol})$, on being refluxed in diphenyl ether containing $\mathrm{Bu}_{3} \mathrm{~N}$ for 1 h under nitrogen, produced the title compound 18 as a light yellow solid ($0.44 \mathrm{~g}, 76.6 \%$), m.p. $244-245^{\circ} \mathrm{C}$ (decomp.); $v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 1586$ and 1642 ; $\delta_{\mathrm{H}}\left[\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO} ; 90 \mathrm{MHz}\right] 4.0(3 \mathrm{H}, \mathrm{s}), 6.72(1 \mathrm{H}, \mathrm{d}), 7.04-7.92$ $(5 \mathrm{H}, \mathrm{m}), 8.12(1 \mathrm{H}, \mathrm{d}), 9.84(1 \mathrm{H}, \mathrm{d})$ and $11.32(1 \mathrm{H}, \mathrm{br} \mathrm{s})$ (Found: C, 77.2; $\mathrm{H}, 4.65 ; \mathrm{N}, 11.1 . \mathrm{C}_{16} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}$ requires $\mathrm{C}, 77.42 ; \mathrm{H}, 4.84$; N, 11.29%)

1-Chloro-7-methyl-7H-pyrido[4,3-c]carbazole 19.-The lactam $18(0.4 \mathrm{~g}, 1.61 \mathrm{mmol})$ and $\mathrm{POCl}_{3}\left(3 \mathrm{~cm}^{3}\right)$, on reaction under the conditions used for the preparation of compound 14 , produced, after the usual work-up, the title compound as a semi-solid mass, which was subjected to purification by column chromatography (neutral $\mathrm{Al}_{2} \mathrm{O}_{3}$). Elution with light petroleum $\left(60-80^{\circ} \mathrm{C}\right)$ gave compound 19 as a light yellow solid $(0.27 \mathrm{~g}$, 65.4%, m.p. $129-130^{\circ} \mathrm{C} ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3} ; 100 \mathrm{MHz}\right) 3.75(3 \mathrm{H}, \mathrm{s})$,
7.25-7.85 (6 H, m), $8.35(1 \mathrm{H}, \mathrm{d})$ and $9.2(1 \mathrm{H}, \mathrm{d}) ; m / z 268$ $(M+2), 267(M+1), 266\left(M^{+}\right), 251,231,230,229,216$ and 215 (Found: C, $71.9 ; \mathrm{H}, 4.0 ; \mathrm{N}, 10.4 . \mathrm{C}_{16} \mathrm{H}_{11} \mathrm{ClN}_{2}$ requires C , 72.04; H, 4.13; N, 10.51\%).

7-Methyl-7H-pyrido[4,3-c] carbazole 20.-Compound 19 $(0.128 \mathrm{~g}, 0.48 \mathrm{mmol})$ on reduction with Zn dust $(0.35 \mathrm{~g})$ in acetic acid under similar conditions to those described for the preparation of compound 3 produced compound 20 as a solid $(0.1 \mathrm{~g}, 90 \%)$ after purification by column chromatography $\left[\mathrm{Al}_{2} \mathrm{O}_{3} /\right.$ light petroleum $\left(60-80^{\circ} \mathrm{C}\right)$-benzene $\left.(9: 1)\right]$, m.p. 164 $165^{\circ} \mathrm{C} ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3} ; 100 \mathrm{MHz}\right) 3.92(3 \mathrm{H}, \mathrm{s}), 7.2-8.08(6 \mathrm{H}, \mathrm{m})$, $8.6(2 \mathrm{H}, \mathrm{d})$ and $10.24(1 \mathrm{H}, \mathrm{s})$ (Found: C, 82.5; H, 4.9; N, 11.95. $\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{~N}_{2}$ requires $\mathrm{C}, 82.76 ; \mathrm{H}, 5.17 ; \mathrm{N}, 12.07 \%$).
β-(9-Methylcarbazol-3-yl)propionic Acid 21.-A suspension of the acid $16(1.0 \mathrm{~g}, 3 \mathrm{mmol})$ in anhydrous ethanol containing $10 \% \mathrm{Pd}-\mathrm{C}(0.4 \mathrm{~g})$ was stirred under H_{2} until the calculated amount of H_{2} had been absorbed ($c a .7 \mathrm{~h}$ to complete the reaction) and after this time the whole acid became soluble in ethanol, resulting in a clear solution. The catalyst was removed by filtration, and then removal of solvent afforded the acid 21 as a solid $(0.9 \mathrm{~g}, 89.3 \%)$, m.p. $118-120^{\circ} \mathrm{C}$; $v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1}$ 1690, 2920 and 3020; ${ }^{1} \mathrm{H}$ NMR spectrum of the methyl ester$\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3} ; 90 \mathrm{MHz}\right) 2.6(2 \mathrm{H}, \mathrm{t}), 3.0(2 \mathrm{H}, \mathrm{t}), 3.55(3 \mathrm{H}, \mathrm{s}), 3.6$ ($3 \mathrm{H}, \mathrm{s}$), $7.0-7.7(5 \mathrm{H}, \mathrm{m})$ and 7.8-8.1 ($2 \mathrm{H}, \mathrm{t}$) (Found: C, 75.6; H, 5.7; N, 5.4. $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{NO}_{2}$ requires $\mathrm{C}, 75.89 ; \mathrm{H}, 5.93 ; \mathrm{N}, 5.53 \%$).
β-(9-Methylcarbazol-3-yl)propionyl Azide 22.—The acid 21 $(0.4 \mathrm{~g}, 1.6 \mathrm{mmol}), \mathrm{Et}_{3} \mathrm{~N}(0.2 \mathrm{~g}, 2 \mathrm{mmol})$, ethyl chloroformate $(0.22 \mathrm{~g}, 2 \mathrm{mmol})$ and $\mathrm{NaN}_{3}(0.18 \mathrm{~g}, 2 \mathrm{mmol})$, on reaction under the conditions as described for the preparation of azide 12 , afforded compound 22 as a solid ($0.37 \mathrm{~g}, 85 \%$), m.p. $79-80^{\circ} \mathrm{C}$ (decomp.); $v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 1600,1610$ and 2225.

2-(9-Methylcarbazol-3-yl)ethyl Isocyanate 23.-The azide 22 $(0.3 \mathrm{~g}, 1.07 \mathrm{mmol})$ was refluxed in anhydrous benzene $\left(15 \mathrm{~cm}^{3}\right)$ for 3 h . Removal of solvent gave the isocyanate 23 as a viscous oil $(0.24 \mathrm{~g}, 90 \%), v_{\text {max }}\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 2250$. It was immediately used for the next step without further purification.

Cyclization of the Isocyanate 23.-Preparation of lactams 24 and 25. PPA (10 g) was added to the above isocyanate 23 $(0.24 \mathrm{~g})$ and the mixture was stirred at $125-130^{\circ} \mathrm{C}$ for 2 h during which time it became deep green in colour. It was decomposed with ice-water, then extracted with ethyl acetate and the extract was washed successively with 5% aq. NaHCO_{3} and water and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. Removal of solvent furnished a yellow brown solid, which was purified by preparative TLC (PLC) [neutral $\mathrm{Al}_{2} \mathrm{O}_{3} /$ benzene-ethyl acetate (1:1)].

Compound 26 [2-aminoethyl-9-methylcarbazole] (relatively low polarity) was obtained as a solid ($0.033 \mathrm{mg}, 15.34 \%$), m.p. $152-153{ }^{\circ} \mathrm{C} ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3} ; 90 \mathrm{MHz}\right) 2.4(2 \mathrm{H}$, br s), 2.9-3.1 (2 H , br t), $3.40-3.65(2 \mathrm{H}, \mathrm{br} \mathrm{m}), 3.7(3 \mathrm{H}, \mathrm{s}), 7.0-8.2(7 \mathrm{H}, \mathrm{m}) ; m / z 224$ (\mathbf{M}^{+}-not visible), $223(\mathrm{M}-1), 209(\mathrm{M}-15), 195,194$ (M-30), 181, 180, 168, 167, 166, 157, 140, 139 and 137 (Found: C, 80.1; H, 6.9; N, 12.2. $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{~N}_{2}$ requires C, 80.36; H, 7.14; N, 12.5%).

From the relatively high polarity fraction a light yellow solid ($154 \mathrm{mg}, 71.62 \%$) was obtained. It was identified as a mixture of lactams 2,3,4,7-tetrahydro-7-methylpyrido[4,3-c] carbazol-1one 24 and 2,3,4,10-tetrahydro-10-methylpyrido[3,4-b]carb-azol-1-one 25 in the ratio $3: 1 ; v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1} 1625,1650$ and 1655; ${ }^{1} \mathrm{H}$ NMR spectrum of the mixture of lactams 24 and 25 : $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3} ; 90 \mathrm{MHz}\right) 3.10(\mathrm{t}), 3.20(\mathrm{t}), 3.45-3.75(\mathrm{br} \mathrm{m}), 3.85$ (s), 3.9 (s), 6.45-6.75 (br), 7.1-7.6(m), 7.9 (s), 8.1 (d), 8.2 (s) and $9.35(\mathrm{~d}) ; m / z 251,250\left(\mathrm{M}^{+}\right), 194$ and 193. These two products could not be separated even by PLC at this stage.

1-Chloro-4,7-dihydro-7-methyl-3H-pyrido[4,3-c]carbazole 27 and 2,3,4,10-Tetrahydro-10-methylpyrido[3,4-b]carbazol-1-one 25.-The mixture of lactams 24 and $25(0.12 \mathrm{~g})$ was refluxed with $\mathrm{POCl}_{3}\left(3 \mathrm{~cm}^{3}\right)$ at $110-120^{\circ} \mathrm{C}$ for 3 h under N_{2}. The mixture was poured into ice-water, left overnight at $0-5^{\circ} \mathrm{C}$, neutralized with aq. $\mathrm{Na}_{2} \mathrm{CO}_{3}$ and extracted with chloroform. After usual work-up the extract gave a brown viscous mass, which was purified by PLC [neutral $\mathrm{Al}_{2} \mathrm{O}_{3} /$ benzene-ethyl acetate (1:1)].

Compound 27 (low polarity) was obtained as a solid (0.06 g), m.p. $55-56{ }^{\circ} \mathrm{C} ; v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1} \quad 1525$ and $1585 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right.$; $90 \mathrm{MHz}) 3.1(2 \mathrm{H}, \mathrm{t}), 3.45-3.7(2 \mathrm{H}, 2 \mathrm{t}), 3.8(3 \mathrm{H}, \mathrm{s}), 7.1-7.6$ $(5 \mathrm{H}, \mathrm{m})$ and $9.4(1 \mathrm{H}, \mathrm{d}) ; m / z 269(\mathrm{M}+1), 268\left(\mathrm{M}^{+}\right), 254$, 253, 225, 224, 198, 197 and 196 (Found: C, 71.4; H, 4.5; N, 10.2. $\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{ClN}_{2}$ requires $\mathrm{C}, 71.51 ; \mathrm{H}, 4.84 ; \mathrm{N}, 10.43 \%$).

Compound 25 (high polarity) was obtained as a solid (19 mg), m.p. 233-235 ${ }^{\circ} \mathrm{C} ; v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1} 1600$ and $1655 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3} ; 90\right.$ $\mathrm{MHz}) 3.2(2 \mathrm{H}, \mathrm{t}), 3.5-3.8(2 \mathrm{H}, \mathrm{br} \mathrm{m}), 3.9(3 \mathrm{H}, \mathrm{s}), 6.4-6.75(1 \mathrm{H}$, br), $7.1-7.6(3 \mathrm{H}, \mathrm{m}), 7.9(1 \mathrm{H}, \mathrm{s}), 8.1(1 \mathrm{H}, \mathrm{d})$ and $8.2(1 \mathrm{H}, \mathrm{s}) ; m / z$ $250\left(\mathrm{M}^{+}\right), 221,193,125$ and 111 (Found: C, 76.6; H, 5.5; N, 11.0. $\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}$ requires $\mathrm{C}, 76.80 ; \mathrm{H}, 5.60 ; \mathrm{N}, 11.20 \%$).

References

1 V. K. Kansal and P. Potier, Tetrahedron, 1986, 42, 2389.
2 A. N. Fujiwara, E. Action and L. Goodman, J. Med. Chem., 1967, 10, 126.

3 R. B. Miller and S. Dugar, Tetrahedron Lett., 1989, 30, 297.
4 M. G. Saulnier and G. W. Gribble, J. Org. Chem., 1983, 48, 2690.
5 D. M. Ketcha and G. W. Gribble, J. Org. Chem., 1985, 50, 5451.
6 C. May and C. J. Moody, J. Chem. Soc., Perkin Trans. I, 1988, 247.
7 G. W. Gribble, M. G. Saulnier, M. P. Sibi and J. A. Obaza Nutaitis, J. Org. Chem., 1984, 49, 4518.
8 A. Langedoen, G. Koomen and U. K. Pandit, Tetrahedron, 1988, 44, 3627.

9 J. Bergman and B. Pelcman, Tetrahedron, 1988, 44, 5215.
10 E. Bisagni, C. Ducrocq, J. M. Lhoste, C. Rivalle and A. Civier, J. Chem. Soc., Perkin Trans. 1, 1979, 1706.
11 D. Pelaprat, A. Delbarre, I. LeGuen, J. B. LePecq, B. Jean, B. P. Roques and P. Bernard, J. Med. Chem., 1980, 20, 1336.
12 J. B. LePecq, M. L. Bret, J. Barbet and B. P. Roques, Proc. Natl. Acad. Sci., USA, 1975, 72, 2915.
13 D. Pelaprat, R. Oberlin, I. LeGuen, B. P. Roques and J. B. LePecq, J. Med. Chem., 1980, 23, 1330.
14 D. Pelaprat, R. Oberlin, B. P. Roques and J. B. LePecq, C. R. Hebd. Séances Acad. Sci., Ser. D, 1976, 283, 1109.
15 S. P. Modi, A. Zayed and S. Archer, J. Org. Chem., 1989, 54, 3084.
16 N. P. Buu-Hoi and N. Noan, J. Org. Chem., 1951, 16, 1327.

Paper 0/05025C

Acknowledgements

We thank CSIR, New Delhi, for financial assistance.

Paper 190
Received 8th November 1990
Accepted 22nd March 1991

